
A Binary Auditory Words Model for Audio Content Identification

Alberto Gramaglia
Audioneex.com

alb.gramaglia@audioneex.com

Abstract

An Audio Content Identification method is
presented, that uses Local Binary Descriptors and
Machine Learning techniques to build an audio
fingerprinting model based on “auditory words”
inspired to the “visual words” model used for image
recognition. This model forms the basis of an audio
recognition system centered around a multi-level
matching algorithm using the Generalized Hough
Transform and Geometric Hashing.

1. Introduction

As the world becomes increasingly interconnected
the production of multimedia content is exponentially
growing, and this mine of information can be exploited
to acquire new knowledge to be used in business
processes or in our everyday life. This requires the
development of tools capable of analyzing such huge
amounts of data in order to extract useful information,
and has drawn the attention of the research community
for the design of efficient methods to perform
automatic processing of audio/visual data in order to
recognize high level contents. In this paper we
introduce a method to identify content in audio data
using techniques developed in fields outside audio
processing and show that they can be used with success
to design a high performance audio content recognition
system.

2. Audio fingerprinting

The concept of fingerprint has been extensively
used in several fields as a mean to identify objects from
their unique characteristics, and audio fingerprinting is
the technique that uses this concept for audio content
identification. The main idea is that of extracting
perceptually meaningful features that best characterize
the audio signals in order to build a compact

"signature" that can later be used to identify specific
content from unknown audio data.

Many methods have been developed that use
different fingerprint models, from physiologically
motivated approaches based on a model of the inner ear
that decomposes the audio signal into its frequency
components using the DFT coupled with some kind of
filter-bank from which to extract relevant features, such
as in [1], to methods using statistical classifiers to
discover perceptually meaningful audio components
[2], landmark points over 2D representations of sound
[3], combinatorial hashing [4] and clustering [5].

Some interesting methods have been proposed that
use computer vision techniques, notably the works in
[6] and [7] have shown the validity of this approach.
The motivation behind this idea is that most audio
fingerprinting methods use some sort of 2D
representation of the audio signal (STFT, Chromagram,
Cochleogram, etc.) and such representations can be
directly used to extract features using 2D computer
vision techniques in order to build robust and efficient
fingerprints.

In the following sections we show how not only it is
possible to use isolated computer vision techniques
(such as descriptors extraction) but also adopt entire
models and paradigms to efficiently solve audio
identification problems.

3. Audio components

One of the most potent features of the human brain
is that of recognizing objects (but also abstract
concepts) using a hierarchical approach where complex
entities are represented by smaller components and
modeled using a structured pattern. An image
recognition model based on these concepts has been
proposed in the Computer Vision community [14] and
has proven successful in the identification of visual
objects. Following this approach, we can think that the
auditory system uses low level components as well as a
primary representation of sounds. These audio

components are characterized by their time-frequency
distribution of intensity, the same as low level visual
features are characterized by their intensity distribution
on the 2D space.

Noise-like components: the main feature of these
components is the absence of a structured pattern and
the random distribution of energy across a broad
frequency band.

Tone-like components: these are audio components
characterized by energy distributions across a
frequency range following a regular pattern due to the
harmonic content of the sound and the presence of a
fundamental frequency, which is used to determine the
"pitch".

Pulse-like components: these audio components are
characterized by, more or less, uniform intensity
distribution across a broad frequency range with high
impulsiveness (high energy released in a very short
period of time).

Any sound can be seen as a combination of these
audio components to form a time-space structure
representing the auditory scene. Similar concepts were
used in [2] where these components were learned from
music data sets using HMMs.

Drawing on these ideas, we developed a method that
aims at building a suitable representation of sound
based on audio components, which we call “auditory
words”, in order to design a robust audio fingerprinting
scheme for audio content identification. In the
following section a detailed explanation of the method
is given.

4. Audio descriptors

A key issue is the representation of the auditory
words in a manner that the resulting fingerprints are

compact, with a good discriminative power and able to
recognize generic audio from very short clips extracted
at any point within a recording, in order to be suitable
for real-time applications. Specifically, we want
descriptors to be:

1. Locally informative
2. Stable
3. Compact and fast to compare
4. Time-translation invariant

We start with resampling the audio signal to cover a
delimited frequency band where most of the useful
information to human listeners lie (the frequency range
100-3000 Hz) and transpose it to the frequency domain
by applying the Short Time Fourier Transform (STFT)
with a window size of 1024 samples and a hop time of
13.88 ms smoothed using the Hamming window. We
then look for Points of Interest (POIs) by searching for
onsets in the frequency spectrum, which indicate the
presence of relevant audio events (instrument notes,
vocals, natural processes, etc.). These onsets generally
produce peaks of consistent intensity so we scan for
"consistent peaks" in the STFT spectrum. A consistent
peak is defined as a small, well localized burst of
energy characterized by its maximum M, width W and
energy content E P defined as follows

EP= ∑
p∈W×W

∣STFT (p)∣2 (1)

A 2-stage approach is used to find the POIs: in the first
stage we scan the STFT spectrum for candidate points
by convolution with the parametric kernel (2)

H=[
−1 −1 −1
−1 k −1
−1 −1 −1] (2)

to find local maxima in order to detect good
candidates. The k parameter is a boosting factor that
determines the sensitivity of the filter to the peaks and
should be properly set to avoid the selection of local
maxima that are not consistent enough (we used k=5).
The result of this stage is the set of candidates given by

C1={p∣STFT (p)∗H>0} (3)

In the second stage we perform a non-maximum
suppression filtering on C1 to get rid of inconsistent
peaks by centering a window W p in p (we used a

 (a) (b) (c)

Figure 1. Examples of audio components: (a) noise-like, (b)
tone-like, (c) pulse-like.

size of 400 ms  340 Hz) and get the final set of
detected POIs as follows

CPOI={p∈C 1∣p=argmax
p∈W p

EP (p)} (4)

The choice of the descriptor was carefully made by
looking at the class of local binary descriptors, which
satisfy the four requirements stated earlier and that
provide ease of computation, efficient storage and fast
comparisons. Almost all of them are derived from or
inspired to the Census Transform (5), introduced in [8],
and methods based on this approach can be found in
[9][10][11].

d (p)= ∪
p '∈N (p)

b (p , p ') (5)

The Census Transform maps a neighborhood N(p)
of a point p to a bit string d, using a comparison binary
function b(-,-). Our descriptor is computed as follows:
at each POI p∈C POI a neighborhood N(p) of
extension Δ F N (p)×ΔT N (p) is considered (the used
size of N(p) is 300 ms  200 Hz). N(p) is then scanned
sliding a small window Wc of size Δ F Wc×ΔT Wc

with a stride of s=(s t , s f) at evenly spaced points
p', as depicted in Figure 2(a). For each scanning
window Wc at each scanning point p' the Mean Energy

EWc
μ

is computed and compared to those of its k-
neighborhood, given by moving Wc in the k directions,
as depicted in Figure 2(b). The Mean Energy
differences are then mapped to the binary space using
the following function

b (p' , p '+δ)={1 if EWc
μ
(p')−EWc

μ
(p'+δ)>0

0 otherwise }(6)

where EWc
μ

is given by

EWc
μ
=

1
∣W c∣
∑

p∈Wc

STFT (p) (7)

and δ is the displacement in the k directions. This
process yields a binary vector v∈{0,1}k for each
scanning window in N(p) whose components are given
by (6). This "sub-descriptor" captures the spatio-
temporal relations between local audio events and the
concatenation produces the final binary descriptor d(p)
for N(p). You can think of this process as the
assembling of a word from its phonemes. The final
descriptor is given by (8).

d (p)= ⊕
W c∈N (p)

v(W c) (8)

The number of scanning windows Wc and the
neighborhood k will determine the size of the
descriptor. Specifically, if N Wc is the number of
scanning windows, then the size of d(p) will be

∣d (p)∣=k⋅NWc (9)

where N Wc , in turn, depends on the strides used to
scan N(p). In our experiments we used a 4-
neighborhood (k=4) in the N, E, S, W directions and a
stride/displacement of 50%. Using a 4-neighborhood
rather than a fully connected 8-neighborhood we didn't
notice any significant reduction in the recognition
accuracy, while reducing the size of the descriptors
(and thus of the fingerprints database) by a factor of 2.
The size of Wc was set to 50ms  35Hz.

5. Learning the auditory words

Each descriptor is a vector representing the local
dynamics of the audio signal that's perceptually
modeled as audio components. Specifically, they are,
with the current settings, 720-bit vectors in the binary
vector space. It is reasonable to think that small
variations in these dynamics are still perceived as the
same sound, therefore it makes sense to cluster this
vector space in order to find a set of representative
vectors into which to map the whole descriptor space.
This set of vectors (the codebook) form the auditory
words, which should be able to capture as much as
possible the statistics of the data set in order to be able
to describe it with good accuracy.

d st

Wc

N(p)

p

sf

Figure 2. Local binary descriptor: (a) the scanning window
is slided over the neighborhood N(p) and (b) the energy
content of the surrounding space is assessed to produce
the binary vector v.

v

(a) (b)

We find these auditory words by a learning process
based on binary vector quantization using k-medians,
which entails the evaluation of representative binary
vectors through a quick selection procedure and the
Hamming distance for similarity computation. The
algorithm proceeds as follows:

1. From a dataset D⊂[0,1]n of binary descriptors
extract a subset V⊂D . This subset (also called
the "training set") should be highly heterogeneous
in the chosen domain in order to capture as much as
possible of the underlying statistics describing D.

2. Perform k-means++ seeding to pick the initial
centroids C (t0)={c1 ... ck} from V, as follows:

• Sample a point v∈V at random from a
uniform distribution as the initial centroid

c1(t 0)

• For each remaining centroid c j (t0) j = 2 ... k

1) Compute the p.d.f. of the points v∈V
according to (10), where ∥x∥ denotes the
Hamming distance

p(v)=
min
c j∈C
∥v−c j∥

∑
h=1

∣V∣

min
c j∈C
∥vh−c j∥

 (10)

2) Sample a point v∈V at random from the
non-uniform distribution given by (10) using
Inverse Transform Sampling, as follows

2.1) Generate a probability value u∈[0,1] at
random from a uniform distribution

2.2) Take the point v̄ such that F (v̄)>u
where F is the cumulative distribution function as
in (11)

F (v̄)=∑
v=1

v̄

p (v) (11)

2.3) Set c j=v̄ and add it to C (t0)

3. Perform k-medians according to the following
algorithm

• Form S j (t)={v∈V : argmin
c∈C (t)

∥v−c j∥} clusters

by grouping all v∈V that are closer to
centroid c j than any other v

• Compute new centroids C (t+1) by
computing a "median vector" in each cluster

S j(t) as follows

c j (t+1)=(M (v1) ,... ,M (vn)) ∀ v∈S j (t)

where M (v x) is given by the following
function

M (v x)={
0 if ∣Z x∣>∣O x∣

1 if ∣Z x∣<∣O x∣

c j x
if ∣Z x∣=∣O x∣

 (13)

and Z x , O x indicate the sets of zeroes and
ones respectively for component x across all
vectors in cluster S j (t) . Equation (13)
effectively computes the median of a component,
and since vectors are binary this reduces to a
simple count of how many ones and zeroes are in
such component.

• Repeat until all clusters are stable. The stability
can be assessed by checking that the vast
majority of vectors are assigned to the same
clusters between iterations or that some cost
function falls below a threshold.

The resulting codebook will be the set of auditory
words used for recognition living in a reduced feature
space than the the vector space in which the original
descriptors live. Experiments show that 100 is the
optimal number of auditory words, as depicted in
Figure 3, which means the original 720-dimensional
feature space can be mapped into a reduced 7-
dimensional binary vector space, so that these words
can easily fit into a machine word.

The auditory words were learned from a music data
set of 200 mixed genre songs and tested on another
music data set using 200 query audio clips played over
the air.

40 100 500 1000 2000 4000 8000 16000

0
20
40
60
80

100

k

A
cc

u
ra

cy
 (

%
)

Figure 3. Optimal value for the cardinality of the
Auditory Dictionary

6. Matching

The most common structure used to quickly retrieve
objects from a database is the inverted index, for which
a vast literature exists, so we use this structure to
quickly search the fingerprints space. A fingerprint is
an ordered sequence F = {s = <w, t, f, e>}, s being a
small structure called a “local fingerprint”, and each
posting P in the inverted lists has the following layout

P=〈F , s , t , e 〉 (14)

where F is the id of the fingerprint in which the word w
occurs, s the local fingerprint id (a sequential number),
t the time location of the local fingerprint and e the
quantization error of w. Each term τic is formed by
the concatenation of the i-th auditory word with the c-
th channel where that word occurs, such channels
being obtained by dividing the spectrum into Nch

frequency channels (we used Nch=60).
The matching algorithm is based on three properties

of our fingerprint model

1. Time proximity: the local fingerprints in an
audio sequence occur all within a defined,
bounded and arbitrary time frame, that is

∀(wi , w j)∈X ⇒ ∣t (w i)−t (w j)∣≤T b

where T b is an arbitrary time interval.

2. Time order: the local fingerprints in an audio
sequence, by construction, are ordered in time
(and monotonically labeled), that is

t(wi)≥t (w j) ∀i> j

3. Spatio-temporal coherence: if F={s1... sn}

is the set of local fingerprints extracted from an
audio recording and Ψ(F) a function
describing the spatio-temporal relationships
between the local fingerprints in F, then for any
two perceptually similar audio F1 and

F 2 must be ∣Ψ(F1)−Ψ(F 2)∣⩽ϵ , with 
sufficiently small.

 The first stage algorithm falls into the category of
Generalized Hough Transforms and uses a matrix Mc

to capture similarities between the query fingerprint
and the reference fingerprints in the database D
exploiting property 1 and 2. The unknown query
sequence X={x1 , ... , xk } is quantized using the

dictionary of auditory words. The low cardinality of the
dictionary and the use of binary descriptors with the
Hamming distance makes this process extremely fast.
After X is transformed into a sequence of auditory
words, the search is carried out using the similarity
matrix Mc and the inverted index. For each auditory
word w i=q(x i) in the query the corresponding
inverted list is retrieved, by means of the term index
τic computed as described earlier, and the postings

processed sequentially. Specifically, for each posting P
in the inverted list L(τic) the cells M c (F , b) are
selected in the similarity matrix, where b is computed
as b=t /T b and a score is assigned according to the
following scoring functions

S tp (F ,b)={atp⋅K tp if s∈M c (F ,b)
0 otherwise

 (15)

and

S t o(F ,b)={at o⋅K to if ti≥t i−1 s i , si−1∈M c (F , b)
0 otherwise

(16)

where si represents the word in the candidate
fingerprint F being selected by w i at step i, K tp

and K t o are arbitrary constants, and atp , at o

are weights computed as follows

atp=1−
∣ew−e∣

∣d∣
 (17)

and

at o=
no

nc

 (18)

where ew and e are the quantization errors of the
query word and the word in the candidate fingerprint
respectively, ∣d∣ is the size of the descriptor (in
bits), no the number of candidates satisfying the time
order property in the selected matrix cell and nc the
number of candidates in the cell. The total score is then
given by

S TOT (F ,b)=S tp (F ,b)+S t o(F ,b) (19)

The idea is to capture similarities between fingerprints
by measuring how well property 1 and 2 are satisfied
using the above scoring functions, where S tp ()

quantifies the time proximity and S t o() the temporal
order. For each candidate word that gets clustered in
the matrix we also save a list of pairs C={〈 s , xi 〉}

that will be used at a later stage. The cells of Mc hold
the following information in an appropriate structure

M c (F , b)=〈STOT , t si−1
, no ,C〉

To find the best matches we then proceed as
follows: be M c (F)=[b1 , ... , bm] a row (column) of
Mc for some F in D. We denote this row (column)
vector by H F(b) and, since it represents time-
related value distributions, we call it a time histogram
for F. For each time histogram in Mc find the bin with
maximum value bmax , that is

bmax=argmax
b∈[1. ..m]

H F(b) (20)

and store the values H F(bmax) in a heap. The set of
top-k elements in the heap are the candidate matches to
the query X. We denote this set by

Dc={F 1 , ... , F k} . It represents a partition of D with
a high probability of finding the true match. Figure 4
shows a pseudo-code for the algorithm above described

In the second stage, property 3 is verified using the set
of candidate pairs C={〈 s ij , x k 〉} associated with the
top-k candidates in the similarity matrix Mc as seeds to
perform sequence alignment and graph matching.

Be X k
={x k−Δ , ... , xk ,... , x k+Δ} a sub-sequence

extracted from the query sequence centered at x k

and G (X k ,E k
) the fully connected graph having as

nodes the local fingerprints in X k and as edges
Ek the position vectors between nodes in the time-

frequency space. Each query local fingerprint xk

processed in the time clustering stage picks a set of
similar local fingerprints belonging to some reference
fingerprints in D. These are stored in the cells of the
matrix Mc as a set of pairs, where sij is the j-th local
fingerprint from fingerprint Fi in D. We use the sets C
taken from the top-n bins of the time histograms

H F(b) for each candidate in the top-k set
Dc={F 1 , ... , F k} instead of just from the bin
bmax in order to increase the probability of match.

To each query local fingerprint x k is then associated
a set of candidate local fingerprints from the database,
as illustrated in the following relation

x k→C k={sij} (21)

Be F j
={s i , j−Δ , ... , sij , ... , s i , j+Δ} a sub-sequence

from the top-k candidate fingerprint Fi centered at
sij , and G (F j , E j

) the fully connected graph
having as nodes the local fingerprints in F j and as
edges E j the position vectors between them.
Property 3 can then be evaluated by aligning the query
sequences X k , determined by the local fingerprints

x k , and the candidate sequences F j , determined
by the set C k , and matching the graphs

G (X k ,E k
) and G (F j , E j

) using a scoring
function S coh (G(X k , E k

) ,G(F j , E j
)) , which will

be defined later, as depicted in Figure 5. The 
parameter determines the size of the neighborhoods
around the reference local fingerprints to be matched,
set to a value in the range [10,20].

The correspondence between the produced graphs is
evaluated by means of a graph matching procedure
called Pairwise Geodetic Hashing, an algorithm based
on the Geometric Hashing technique, a well known
method for object matching introduced in [15] and
[16].

Given two attributed graphs G (X k ,E k , Ak
) and

G (F j , E j , A j
) the adjacency matrices M X and

M F can be built so that each element of the matrix
represents the position vector v⃗ between two local
fingerprints. Since the graphs are simple and
undirected, these adjacency matrices are symmetrical
and triangular, so for a n  n matrix we only need to
consider n(n−1)/2 elements. These elements can
be indexed in a lookup table, where each index is

 sij

Time clustering

Top-k

F8

F19

F3

xk

...

D

X... ...

S(Gk,Gj)

X
D

 k

xk

xk-2

xk-1

xk+1

xk+2

sj

sj-2

sj-1

sj+1

sj+2

 

Top-k

Results

Results

Figure 5. The 2-Level matching process.

L1

L2xk

H[M]

Mc

associated to the pair of local fingerprints connected by
that position vector, along with some attributes A. The
similarity between the graphs can then be quickly
computed using these lookup tables by scoring the
matching edges and the similarity between the nodes
according to the set of attributes. The time and
frequency values are quantized to allow some
deformation in the graphs and account for errors due to
noise. To disambiguate the edges we pair them to a
reference edge represented by the position vector
between the local fingerprint being processed and a
reference local fingerprint. This reference node should
be one that's common to both the query graphs and the
candidate graphs in order for the match to succeed. As
reference nodes we then choose the query local
fingerprints x k and the associated candidates

C k={sij} picked in the time clustering stage. If
x k and sij happen to belong to the same

fingerprint then the graphs they induce will be
constructed using the same reference system and they
will match to some degree.
The lookup tables are implemented using hash tables to
get O(1) time complexity and have the following
structure

H [M (i , j)]=(si , s j) (22)

where the keys are created by hashing the elements of
the adjacency matrix using the following hashing
function

M (i , j)=vij
t
⊕v ij

f
⊕v i , ref

t
⊕v i , ref

f (23)

the  operator indicates concatenation, v ij
t

and

v ij
f the time component and frequency component

respectively of the position vector between the i-th
node and j-th node, v i , ref

t and v i , ref
f the time

component and frequency component of the position
vector between the i-th node and reference node. These
hashed values will be the keys e of the hash table.
 The scoring is performed by considering both the
geometric relationships and the similarity between local
fingerprints using specific node attributes according to
the following scoring function

S coh (G(X k ,E k , Ak
) ,G(F j , E j , A j

))=¿

∑
e∈E k

∩E j

K c+as(e)⋅K s
 (24)

where

a s(e)=2−
1
∣d∣
[D H(xi

e , si
e
)+DH (x j

e , s j
e
)] (25)

For each common edge e, that is the intersection
between Ek and E j which can be computed by
finding common keys between the hash tables H X

and H F , the function gives a constant score K c

for the spatio-temporal coherence and a weighed score
K s for the similarity between the local fingerprints

connected by the edge. DH (x
e , se
) denotes the

Hamming distance between the query local fingerprint
and the candidate local fingerprint at both ends of the
common edge e. In our implementation we used the
same value for K c and K s (K=1000). Note that
the nodes attributes in this case coincide with the local
fingerprint descriptors but other parameters may be
used to measure the similarity, as we'll see below.

 The similarity function (25) requires the binary
descriptors be stored in order to compute the Hamming
distance, which can result in high storage space
requirements for large data sets. To avoid this, the
following similarity function can be used

a s(e)=
1
∣d∣[β(w x i

e , ws i
e)+β(w x j

e , w s j
e)] (26)

where w=q (x) are the auditory words resulting
from the binary vector quantization, β() a function
defined as follows

β(w1 ,w 2)={∣d∣−∣ε(w1)−ε(w2)∣ w1=w2

0 w1≠w2

(27)

ε() being the quantization error of w . This
implementation uses simple comparison operators
instead of the Hamming distance as a measure of
similarity and only requires storing the auditory words
and their quantization errors (which can be pre-
computed) rather than the whole descriptors, with
massive savings in terms of storage space. The results
of this second stage are stored in a final top-k list. The
effect of this “reranking” process is that of increasing
the probability of match in the top-k list when the
scores between the candidates are too close. The use of
two different stages makes the matching algorithm a
multi-level (2-level) process, which can be used to
make the system adaptive, as depicted in Figure 6.
Here we use a simple threshold to decide whether to
activate the second stage, but something more
sophisticated may be devised.

7. Performance

The performance of the proposed method have been
evaluated using 10,000 query audio clips extracted
from a set of 1,000 music recordings of different
genres. To test the time-translation invariance of the
fingerprint model the clips were taken at random
offsets within the recordings.

7.1 Robustness

We applied various transformations to the query
clips that have been typically used to test other audio
identification systems and that are listed in Table 1.
The first column reports the transformation applied
while the second and third column report the accuracy
for different lengths of the query clips. The results
clearly show the validity of our method. However,
applying single processing steps to audio signals is not
very realistic, as in real world scenarios the audio
typically undergoes different transformations before
being delivered to the recipients. In this regard, we use
different audio models in an attempt to represent
different scenarios where ACI technology may be
applied.

Table 1

Transformation 5-second 10-second

Equalization (as in [1]) 99.9% 100%

Echo (delay = 250ms, decay = 0.2) 99.9% 100%

Tempo scaling (+10%) 99.7% 99.9%

Linear Speed Change +2% 88.9% 96.7%

Linear Speed Change -2% 87.2% 96.6%

MP3 encoding @ 44.1KHz, 32Kb/s 99.9% 99.9%

GSM encoding @ 8KHz, 13Kb/s 92.2% 98.10%

Model 1

This model represents a typical processing chain that is
common, for example, in radio broadcasting. This
chain is not standard and may vary considerably
depending on the application, but after some research it
appears that typical processing chains in broadcast
audio include the stages depicted in Figure 7 below

For the harmonic enhancer we added even order
harmonics at a crossover frequency of 4kHz with a
drive of 6dB, the equalization stage applied the EMI 78
curve to emphasize the bass while reducing noise at
high frequencies, the compressor had a threshold of
-35dB and ratio, attack and release of 6:1, 100ms and
1s respectively, while the tempo was scaled up by 10%.

Model 2

This model represents a tougher scenario where the
original audio signal is passed through the processing
chain of Model 1 and additively combined to another
audio signal. A typical application that can be roughly
modeled in this way is over-the-air identification,
where pre-processed audio (for example a radio
broadcast or other source) is played in an environment
and affected by background noise before being
recorded by the ACI system. The background noise
sample used in the tests was recorded in a marketplace
and has been randomly added to the query clips at
various Signal to Noise Ratios.

The results for the two models are reported in Table 2.
It shows that the proposed method is also effective for
recognition of distorted audio in the presence of
additive noise. The tests were conducted following a
forced-choice approach where all the query audio clips
were taken from recordings present in the database and
the system forced to choose a best match.

Level 1
Time-clustering

p(match) > 
?

Results

Level 2
PWG Hashing

 NO

YES

Figure 6. Multilevel matching scheme.

Harmonic
Enhancer Equalizer Compressor

Time
scaler

Xi(t) Xo(t)

Figure 7. Model 1 test.

Harmonic
Enhancer Equalizer Compressor

Time
scaler

Xo(t)
+n(t)

Xi(t)

Figure 8. Model 2 test.

Table 2

Processing 5-second 10-second

Model 1 97.2% 99.4%

Model 2 See Figure 9 See Figure 9

7.2 Speed

The recognition time basically depends on the speed
of the fingerprinting and matching processes, which
have a constant and linear time complexity of O(Ti)
and O(|D|) respectively at each processing step, where
Ti is the duration of an input audio block (fixed) and |D|
the size of the fingerprint database (generally variable).
Extracting an audio signature from 1 second of audio
took approximately 6 ms on average, while searching
the fingerprint space for a match depends on the size of
the fingerprint database and the distribution of the
words in the index. On a simulated database of 10,000
recordings with an average duration of 5 minutes and a
quasi-uniform distribution of words it took on average
210ms to search for a match. These figures where
obtained using non-optimized algorithms (aside from
the FFT computation) written in C++ and running on a
laptop computer with a 2.53GHz i5 processor, 3MB L3
cache and 4GB of RAM.

7.3 Compactness

 Our fingerprinting method is adaptive as it selects
the interest points based on the characteristics of the
audio, so the granularity is not fixed and depends on
the size of the maxima suppression window. A rough
estimation of the expected number of (local)
fingerprints per time unit can be calculated using the
following formula (28)

μLF≃⌊ Δ T
Δ T W p

⌋⋅⌊ Δ f
Δ f W p

⌋ (28)

which, with the current settings, corresponds to 18
fingerprints per second. A statistical analysis on the
music database used for our experiments reveals that
this is indeed the average granularity, as can be seen in
Figure 10. Considering that the auditory words are 7-
bit binary vectors, the p.d.f. in Figure 10 indicates an
average rate of about 18 words per second, that is a
mean throughput of 126 b/s. Thus, our method
produces very compact fingerprints allowing, for
example, a music database of 1 million recordings with
an average duration of 4 minutes be fingerprinted using
less than 4GB of storage space (excluding support
information).

8. Conclusions

We have presented an audio content identification
method based on a binary Auditory Words model built
using local binary descriptors and inspired to
techniques and paradigms from the Computer Vision
and Information Retrieval communities. Previous
works have shown the efficacy of some methods used
for visual recognition to solve audio content
identification problems and our work demonstrates
how not only specific processing techniques but entire
models and paradigms can be adopted with success.
Further work should probably be focused on the search
algorithm, particularly on the use of more efficient data
structures. A thorough analysis of the parameters of the
system (especially those used to build the descriptors)
to observe how the variation of these values impact the
system's performances is also worth further
investigation.

-15 -10 -5 0 5 10 15

0

20

40

60

80

100

Figure 9. Model 2 identif ication accuracy

5s clips

10s clips

SNR (dB)

A
cc

u
ra

cy
 (

%
)

0
1

2
3

4
5

6
7

8
9
10

11
12

13
14

15
16

17
18

19
20

21
22

23
24

25
26

27
28

29
30

31
32

33
34

0

0.05

0.1

0.15

(fp/s)

Figure 10. Distribution of fingerprint rates.

9. References

[1] J. Haitsma, T. Kalker. "A Highly Robust Audio
Fingerprinting System", Proc. International
Conf. Music Information Retrieval, 2002.

[2] P. Cano, E. Batlle, H. Mayer, and H.
Neuschmied. "Robust sound modeling for song
detection in broadcast audio", in Proc. AES
112th Int. Conv., Munich, Germany, May 2002.

[3] Cheng Yang. "MACS: Music Audio
Characteristic Sequence Indexing For Similarity
Retrieval", in IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics,
2001.

[4] A.Wang. "An industrial-strength audio search
algorithm", in Proc. of International
Conference on Music Information Retrieval
(ISMIR), 2003.

[5] J. Herre, E. Allamanche, and O. Hellmuth.
"Robust matching of audio signals using
spectral flatness features", in Proc. IEEE
Workshop on Applications of Signal Processing
to Audio and Acoustics (WASPAA), 2001, pp.
127–130.

[6] Y. Ke, D. Hoiem, and R. Sukthankar.
"Computer vision for music identification", in
Proc. Int. Conf. on Computer Vision and
Pattern Recognition (CVPR), 2005, pp. 597–
604.

[7] Shumeet Baluja, Michele Covell. "Content
Fingerprinting Using Wavelets", Proc. CVMP,
2006.

[8] Ramin Zabih1 and John Woodll. "Non-
parametric Local Transforms for Computing
Visual Correspondence", in Proceedings of
European Conference on Computer Vision,
Stockholm, Sweden, May 1994, pages 151-158

[9] M. Calonder, V. Lepetit, C. Strecha, and P. Fua.
"BRIEF: Binary Robust Independent
Elementary Features", in Computer Vision–
ECCV 2010, pages 778–792, 2010.

[10] A. Alahi, R. Ortiz, and P. Vandergheynst.
"FREAK: Fast Retina Keypoint", in IEEE
Conference on Computer Vision and Pattern
Recognition, 2012.

[11] E. Rublee, V. Rabaud, K. Konolige, and G.
Bradski. "Orb: An efficient alternative to SIFT
or SURF", in International Conference on
Computer Vision, (Barcelona), 2011.

[12] Pasi Fränti, Timo Kaukoranta. "Binary vector
quantizer design using soft centroids", in Signal
Processing: Image Communication 14, 1999.

[13] C. Grana, D. Borghesani, M. Manfredi, R.
Cucchiara, "A Fast Approach for Integrating
ORB Descriptors in the Bag of Words Model",
in press on Proceedings of IS&T/SPIE
Electronic Imaging: Multimedia Content
Access: Algorithms and Systems, San Francisco,
California, US, Feb. 2-7, 2013

[14] J. Sivic and A. Zisserman. "Video Google: A
Text Retrieval Approach to Object Matching in
Videos", in Proceedings of the Ninth IEEE
International Conference on Computer Vision,
2003.

[15] Jacob T. Schwartz and Micha Sharir.
"Identification of Partially Obscured Objects in
Two and Three Dimensions by Matching Noisy
Characteristic Curves", in The International
Journal of Robotics Research, 1987.

[16] Y.Lamdan, J.Schwartz, and H.Wolfson. "Affine
invariant model-based object recognition",
IEEE Trans. Robotics and Automation, 6:578-
589, 1990.

[17] Justin Zobel and Alistair Moffat. "Inverted files
for text search engines", in ACM Computing
Surveys, 38(2):6, 2006.

[18] H. Turtle and J. Flood. "Query evaluation:
Strategies and optimizations", in Information
Processing and Management, 31(6):831–850,
1995

[19] M. Fontoura , V. Josifovski , J. Liu , S.
Venkatesan , X. Zhu , J. Zien. "Evaluation
Strategies for Topk Queries over
MemoryResident Inverted Indexes",

Permission to reproduce and distribute this work, whether in
part or in whole, in digital form or hard copy, is granted
without a fee for non-profit personal or educational
purposes. All copies must bear the title and the author of
this work as full citation, including all copyright notices.

© 2014 – Alberto Gramaglia

	1. Introduction
	2. Audio fingerprinting
	3. Audio components
	4. Audio descriptors
	5. Learning the auditory words
	6. Matching
	7. Performance
	7.1 Robustness
	7.2 Speed
	7.3 Compactness
	8. Conclusions
	9. References

