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Abstract

An  Audio  Content  Identification  method  is
presented,  that  uses  Local  Binary  Descriptors  and
Machine  Learning  techniques  to  build  an  audio
fingerprinting  model  based  on  “auditory  words”
inspired to the “visual words” model used for image
recognition. This model forms the basis of an audio
recognition  system  centered  around  a  multi-level
matching  algorithm  using  the  Generalized  Hough
Transform and Geometric Hashing.

1. Introduction

As the world becomes increasingly interconnected
the production of multimedia content is exponentially
growing, and this mine of information can be exploited
to  acquire  new  knowledge  to  be  used  in  business
processes  or  in  our  everyday  life.  This  requires  the
development of  tools capable of analyzing such  huge
amounts of data in order to extract useful information,
and has drawn the attention of the research community
for  the  design  of  efficient  methods  to  perform
automatic processing of audio/visual  data in order  to
recognize  high  level  contents.  In  this  paper  we
introduce  a  method to identify content  in audio data
using  techniques  developed  in  fields  outside  audio
processing and show that they can be used with success
to design a high performance audio content recognition
system.

2. Audio fingerprinting

The  concept  of  fingerprint  has  been  extensively
used in several fields as a mean to identify objects from
their unique characteristics, and audio fingerprinting is
the technique that uses this concept for audio content
identification.  The  main  idea  is  that  of  extracting
perceptually meaningful features that best characterize
the  audio  signals  in  order  to  build  a  compact

"signature"  that  can later  be used to identify specific
content from unknown audio data.

Many  methods  have  been  developed  that  use
different  fingerprint  models,  from  physiologically
motivated approaches based on a model of the inner ear
that  decomposes  the  audio  signal  into  its  frequency
components using the DFT coupled with some kind of
filter-bank from which to extract relevant features, such
as  in  [1],  to  methods  using  statistical  classifiers  to
discover  perceptually  meaningful  audio  components
[2], landmark points over 2D representations of sound
[3], combinatorial hashing [4] and clustering [5].

Some interesting methods have been proposed that
use computer vision techniques, notably the works in
[6] and [7] have shown the validity of this approach.
The  motivation  behind  this  idea  is  that  most  audio
fingerprinting  methods  use  some  sort  of  2D
representation of the audio signal (STFT, Chromagram,
Cochleogram,  etc.)  and  such  representations  can  be
directly  used  to  extract  features  using  2D  computer
vision techniques in order to build robust and efficient
fingerprints.

In the following sections we show how not only it is
possible  to  use  isolated  computer  vision  techniques
(such as  descriptors  extraction)  but  also adopt  entire
models  and  paradigms  to  efficiently  solve  audio
identification problems.

3. Audio components

One of the most potent features of the human brain
is  that  of  recognizing  objects  (but  also  abstract
concepts) using a hierarchical approach where complex
entities  are  represented  by  smaller  components  and
modeled  using  a  structured  pattern.  An  image
recognition model  based  on these  concepts  has  been
proposed in the Computer Vision community [14] and
has  proven  successful  in  the  identification  of  visual
objects. Following this approach, we can think that the
auditory system uses low level components as well as a
primary  representation  of  sounds.  These  audio



components are characterized by their time-frequency
distribution of intensity,  the same as low level visual
features are characterized by their intensity distribution
on the 2D space.

Noise-like  components:  the  main  feature  of  these
components is the absence of a structured pattern and
the  random  distribution  of  energy  across  a  broad
frequency band.

Tone-like  components:  these  are  audio  components
characterized  by  energy  distributions  across  a
frequency range following a regular pattern due to the
harmonic content of the sound and the presence of a
fundamental frequency, which is used to determine the
"pitch".

Pulse-like  components:  these  audio  components  are
characterized  by,  more  or  less,  uniform  intensity
distribution across a broad frequency range with high
impulsiveness  (high  energy  released  in  a  very  short
period of time).

Any sound can be seen as a combination of these
audio  components  to  form  a  time-space  structure
representing the auditory scene. Similar concepts were
used in [2] where these components were learned from
music data sets using HMMs.

Drawing on these ideas, we developed a method that
aims  at  building  a  suitable  representation  of  sound
based on audio components, which we call  “auditory
words”, in order to design a robust audio fingerprinting
scheme  for  audio  content  identification.  In  the
following section a detailed explanation of the method
is given.

4. Audio descriptors

A key issue  is  the  representation  of  the  auditory
words in  a  manner that  the resulting fingerprints  are

compact, with a good discriminative power and able to
recognize generic audio from very short clips extracted
at any point within a recording, in order to be suitable
for  real-time  applications.  Specifically,  we  want
descriptors to be:

1. Locally informative
2. Stable
3. Compact and fast to compare
4. Time-translation invariant

We start with resampling the audio signal to cover a
delimited  frequency  band  where  most  of  the  useful
information to human listeners lie (the frequency range
100-3000 Hz) and transpose it to the frequency domain
by applying the Short Time Fourier Transform (STFT)
with a window size of 1024 samples and a hop time of
13.88 ms smoothed using the Hamming window. We
then look for Points of Interest (POIs) by searching for
onsets in  the frequency spectrum, which indicate the
presence  of  relevant  audio  events  (instrument  notes,
vocals, natural processes, etc.). These onsets generally
produce  peaks of  consistent  intensity so we scan for
"consistent peaks" in the STFT spectrum. A consistent
peak  is  defined  as  a  small,  well  localized  burst  of
energy characterized by its maximum M, width W and
energy content E P defined as follows

EP= ∑
p∈W×W

∣STFT ( p)∣2  (1)

 
A 2-stage approach is used to find the POIs: in the first
stage we scan the STFT spectrum for candidate points
by convolution with the parametric kernel (2)

H=[
−1 −1 −1
−1 k −1
−1 −1 −1]  (2)

to  find  local  maxima  in  order  to  detect  good
candidates.  The  k parameter  is a boosting factor that
determines the sensitivity of the filter to the peaks and
should be properly set to avoid the selection of local
maxima that are not consistent enough (we used  k=5).
The result of this stage is the set of candidates given by

C1={p∣STFT ( p )∗H>0}  (3)

In  the  second  stage  we  perform a  non-maximum
suppression filtering on C1 to get rid of inconsistent
peaks by centering a window W p in  p (we used a

         (a)                               (b)                              (c)

Figure 1. Examples of audio components: (a) noise-like, (b) 
tone-like, (c) pulse-like.



size  of  400  ms   340  Hz)  and  get  the  final  set  of
detected POIs as follows

CPOI={p∈C 1∣p=argmax
p∈W p

EP ( p)}  (4)

The choice of the descriptor was carefully made by
looking at the class of local binary descriptors, which
satisfy  the  four  requirements  stated  earlier  and  that
provide ease of computation, efficient storage and fast
comparisons. Almost all of them are derived from or
inspired to the Census Transform (5), introduced in [8],
and methods based on this approach can be found in
[9][10][11].

d ( p)= ∪
p '∈N (p )

b ( p , p ')  (5)

The Census Transform maps a neighborhood  N(p)
of a point p to a bit string d, using a comparison binary
function b(-,-). Our descriptor is computed as follows:
at  each  POI p∈C POI a  neighborhood  N(p) of
extension Δ F N ( p )×ΔT N ( p) is  considered  (the  used
size of N(p) is 300 ms  200 Hz). N(p) is then scanned
sliding  a  small  window  Wc  of  size Δ F Wc×ΔT Wc

with a stride of  s=(s t , s f ) at evenly spaced points
p',  as  depicted  in  Figure  2(a).  For  each  scanning
window Wc at each scanning point p' the Mean Energy

EWc
μ

is  computed  and compared  to  those of  its  k-
neighborhood, given by moving Wc in the k directions,
as  depicted  in  Figure  2(b).  The  Mean  Energy
differences are then mapped to the binary space using
the following function

b ( p' , p '+δ)={1 if EWc
μ
( p' )−EWc

μ
( p'+δ)>0

0 otherwise }(6)

where EWc
μ

is given by

EWc
μ
=

1
∣W c∣
∑

p∈Wc

STFT ( p )  (7)

and  δ is  the  displacement  in  the  k directions.  This
process  yields  a  binary  vector  v∈{0,1}k for  each
scanning window in N(p) whose components are given
by  (6).  This  "sub-descriptor"  captures  the  spatio-
temporal relations between local audio events and the
concatenation produces the final binary descriptor d(p)
for  N(p).  You  can  think  of  this  process  as  the
assembling  of  a  word  from its  phonemes.  The  final
descriptor is given by (8).

d ( p)= ⊕
W c∈N ( p)

v(W c )  (8)

The  number  of  scanning  windows  Wc and  the
neighborhood  k will  determine  the  size  of  the
descriptor.  Specifically,  if N Wc is  the  number  of
scanning windows, then the size of d(p) will be

∣d ( p)∣=k⋅NWc  (9)

where N Wc , in turn, depends on the strides used to
scan  N(p).  In  our  experiments  we  used  a  4-
neighborhood (k=4) in the N, E, S, W directions and a
stride/displacement  of  50%.  Using a  4-neighborhood
rather than a fully connected 8-neighborhood we didn't
notice  any  significant  reduction  in  the  recognition
accuracy,  while  reducing  the  size  of  the  descriptors
(and thus of the fingerprints database) by a factor of 2.
The size of Wc was set to 50ms  35Hz.

5. Learning the auditory words

Each descriptor  is  a  vector  representing the  local
dynamics  of  the  audio  signal  that's  perceptually
modeled as audio components.  Specifically,  they are,
with the current settings, 720-bit vectors in the binary
vector  space.  It  is  reasonable  to  think  that  small
variations in these dynamics are still perceived as the
same sound,  therefore  it  makes sense  to  cluster  this
vector  space  in  order  to  find  a  set  of  representative
vectors into which to map the whole descriptor space.
This set of vectors (the codebook) form the auditory
words,  which  should  be  able  to  capture  as  much as
possible the statistics of the data set in order to be able
to describe it with good accuracy. 

d st

Wc

N( p )

p

sf

Figure 2. Local binary descriptor: (a) the scanning window 
is slided over the neighborhood  N(p)  and (b) the energy 
content of the surrounding space is assessed to produce 
the binary vector v.
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We find these auditory words by a learning process
based on  binary vector quantization using  k-medians,
which  entails  the  evaluation  of  representative  binary
vectors  through  a  quick  selection  procedure  and  the
Hamming  distance  for  similarity  computation.  The
algorithm proceeds as follows:

1. From  a  dataset D⊂[0,1 ]n of  binary  descriptors
extract a subset V⊂D . This subset (also called
the "training set") should be highly heterogeneous
in the chosen domain in order to capture as much as
possible of the underlying statistics describing D.

2. Perform  k-means++  seeding  to  pick  the  initial
centroids C (t0)={c1 ... ck} from V, as follows:

• Sample  a  point v∈V at  random  from  a
uniform  distribution  as  the  initial  centroid

c1(t 0)

• For each remaining centroid c j (t0)  j = 2 ... k

1)  Compute  the  p.d.f.  of  the  points v∈V
according  to  (10),  where  ∥x∥ denotes  the
Hamming distance

p(v)=
min
c j∈C
∥v−c j∥

∑
h=1

∣V∣

min
c j∈C
∥vh−c j∥

                            (10)

2)  Sample  a  point v∈V at  random from the
non-uniform  distribution  given  by  (10)  using
Inverse Transform Sampling, as follows
 
2.1)  Generate  a  probability  value u∈[0,1] at
random from a uniform distribution

2.2)  Take  the  point v̄ such  that F ( v̄)>u
where F is the cumulative distribution function as
in (11)

F ( v̄)=∑
v=1

v̄

p (v)                                         (11)

2.3) Set c j=v̄ and add it to C (t0)

3.  Perform  k-medians  according  to  the  following
algorithm

• Form S j (t)={v∈V : argmin
c∈C (t)

∥v−c j∥} clusters

by  grouping  all v∈V that  are  closer  to
centroid c j than any other v

• Compute  new  centroids C (t+1) by
computing  a  "median  vector"  in  each  cluster

S j( t) as follows

c j (t+1)=(M (v1) ,... ,M (vn)) ∀ v∈S j (t)

where M (v x ) is  given  by  the  following
function

M (v x )={
0 if ∣Z x∣>∣O x∣

1 if ∣Z x∣<∣O x∣

c j x
if ∣Z x∣=∣O x∣

                     (13)

and Z x , O x indicate the sets of zeroes and
ones  respectively  for  component  x across  all
vectors  in  cluster S j (t) .  Equation  (13)
effectively computes the median of a component,
and  since  vectors  are  binary this  reduces  to  a
simple count of how many ones and zeroes are in
such component.

• Repeat until all clusters are stable. The stability
can  be  assessed  by  checking  that  the  vast
majority  of  vectors  are  assigned  to  the  same
clusters  between  iterations  or  that  some  cost
function falls below a threshold.

The  resulting  codebook  will  be  the  set  of  auditory
words used for recognition living in a reduced feature
space than the the vector space in which the original
descriptors  live.  Experiments  show  that  100  is  the
optimal  number  of  auditory  words,  as  depicted  in
Figure  3,  which  means  the  original  720-dimensional
feature  space  can  be  mapped  into  a  reduced  7-
dimensional binary vector  space,  so that  these words
can easily fit into a machine word. 

The auditory words were learned from a music data
set  of  200  mixed genre  songs and tested  on another
music data set using 200 query audio clips played over
the air.
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Figure 3. Optimal value for the cardinality of the 
Auditory Dictionary



6. Matching

The most common structure used to quickly retrieve
objects from a database is the inverted index, for which
a  vast  literature  exists,  so  we  use  this  structure  to
quickly search the fingerprints space. A fingerprint is
an ordered sequence  F = {s = <w,  t,  f, e>},  s being a
small  structure  called  a “local  fingerprint”,  and each
posting P in the inverted lists has the following layout

P=〈F , s , t , e 〉  (14)

where F is the id of the fingerprint in which the word w
occurs, s the local fingerprint id (a sequential number),
t the time location of  the local  fingerprint  and  e the
quantization error of  w. Each term τic is formed by
the concatenation of the i-th auditory word with the c-
th  channel  where  that  word  occurs,  such   channels
being  obtained  by  dividing  the  spectrum  into  Nch

frequency channels (we used Nch=60).
The matching algorithm is based on three properties

of our fingerprint model

1. Time  proximity:  the  local  fingerprints  in  an
audio  sequence  occur  all  within  a  defined,
bounded and arbitrary time frame, that is

∀(wi , w j)∈X ⇒ ∣t (w i)−t (w j)∣≤T b

where T b is an arbitrary time interval.

2. Time order:  the local  fingerprints in an audio
sequence, by construction, are ordered in time
(and monotonically labeled), that is

t(wi)≥t (w j ) ∀i> j

3. Spatio-temporal  coherence:  if F={s1... sn}

is the set of local fingerprints extracted from an
audio  recording  and Ψ(F ) a  function
describing  the  spatio-temporal  relationships
between the local fingerprints in F, then for any
two  perceptually  similar  audio F1 and

F 2 must be ∣Ψ(F1)−Ψ(F 2)∣⩽ϵ ,  with  
sufficiently small.

  The first  stage algorithm falls  into the category of
Generalized Hough Transforms and uses a matrix  Mc

to  capture  similarities  between  the  query  fingerprint
and  the  reference  fingerprints  in  the  database  D
exploiting  property  1  and  2.  The  unknown  query
sequence X={x1 , ... , xk } is  quantized  using  the

dictionary of auditory words. The low cardinality of the
dictionary and the use of  binary descriptors  with the
Hamming distance makes this process extremely fast.
After  X is  transformed  into  a  sequence  of  auditory
words,  the  search  is  carried  out  using  the  similarity
matrix  Mc and the inverted  index. For each auditory
word w i=q(x i) in  the  query   the  corresponding
inverted list is retrieved, by means of the term index
τic computed as described earlier, and the postings

processed sequentially. Specifically, for each posting P
in the inverted list L( τic) the cells M c (F , b) are
selected in the similarity matrix, where  b is computed
as b=t /T b and a score is assigned according to the
following scoring functions

S tp (F ,b)={atp⋅K tp if s∈M c (F ,b)
0 otherwise

 (15)

and

S t o(F ,b)={at o⋅K to if ti≥t i−1 s i , si−1∈M c (F , b)
0 otherwise

(16)

where si represents  the  word  in  the  candidate
fingerprint  F being selected by w i at step  i, K tp

and K t o are  arbitrary constants,  and atp , at o

are weights computed as follows

atp=1−
∣ew−e∣

∣d∣
 (17)

and

at o=
no

nc

 (18)

where ew and e are the quantization errors of the
query word and the word in the candidate fingerprint
respectively, ∣d∣ is  the  size  of  the  descriptor  (in
bits), no the number of candidates satisfying the time
order property in the selected matrix cell and nc the
number of candidates in the cell. The total score is then
given by

S TOT (F ,b )=S tp (F ,b )+S t o(F ,b )  (19)

The idea is to capture similarities between fingerprints
by measuring how well property 1 and 2 are satisfied
using  the  above  scoring  functions,  where S tp ()



quantifies the time proximity and S t o() the temporal
order.  For each candidate word that gets clustered in
the matrix we also save a list of pairs C={〈 s , xi 〉}

that will be used at a later stage. The cells of Mc hold
the following information in an appropriate structure

M c (F , b)=〈STOT , t si−1
, no ,C〉

To  find  the  best  matches  we  then  proceed  as
follows: be  M c (F )=[b1 , ... , bm] a row (column) of
Mc for  some  F in  D.  We denote  this  row (column)
vector  by  H F(b) and,  since  it  represents  time-
related value distributions, we call it a  time histogram
for F. For each time histogram in Mc find the bin with
maximum value bmax , that is

bmax=argmax
b∈[1. ..m]

H F(b)  (20)

and store the values H F(bmax ) in a heap. The set of
top-k elements in the heap are the candidate matches to
the  query  X.  We  denote  this  set  by

Dc={F 1 , ... , F k} . It represents a partition of D with
a high probability of finding the true match. Figure  4
shows a pseudo-code for the algorithm above described

In the second stage, property 3 is verified using the set
of candidate pairs C={〈 s ij , x k 〉} associated with the
top-k candidates in the similarity matrix Mc as seeds to
perform sequence alignment and graph matching.

Be X k
={x k−Δ , ... , xk ,... , x k+Δ} a  sub-sequence

extracted  from the  query sequence  centered  at x k

and G (X k ,E k
) the fully connected graph having as

nodes  the  local  fingerprints  in X k and  as  edges
Ek the position vectors between nodes in the time-

frequency  space.  Each  query  local  fingerprint xk

processed  in  the time clustering stage  picks a  set  of
similar local fingerprints belonging to some reference
fingerprints in  D. These are stored in the cells of the
matrix Mc as a set of pairs, where sij is the j-th local
fingerprint from fingerprint Fi in D. We use the sets C
taken  from  the  top-n bins  of  the  time  histograms

H F(b) for  each  candidate  in  the  top-k set
Dc={F 1 , ... , F k} instead  of  just  from  the  bin
bmax in order  to increase the probability of match.

To each query local fingerprint x k is then associated
a set of candidate local fingerprints from the database,
as illustrated in the following relation

x k→C k={sij}  (21)

Be F j
={s i , j−Δ , ... , sij , ... , s i , j+Δ} a  sub-sequence

from  the  top-k candidate  fingerprint  Fi centered  at
sij ,  and G (F j , E j

) the  fully  connected  graph
having as nodes the local fingerprints in F j and  as
edges E j the  position  vectors  between  them.
Property 3 can then be evaluated by aligning the query
sequences X k , determined by the local fingerprints

x k , and the candidate sequences F j , determined
by  the  set C k ,  and  matching  the  graphs

G (X k ,E k
) and G (F j , E j

) using  a  scoring
function  S coh (G( X k , E k

) ,G(F j , E j
)) ,  which  will

be  defined  later,  as  depicted  in  Figure  5.  The  
parameter  determines  the  size  of  the  neighborhoods
around the reference local fingerprints to be matched,
set to a value in the range [10,20].

The  correspondence  between the  produced  graphs  is
evaluated  by  means  of  a  graph  matching  procedure
called Pairwise Geodetic Hashing,  an algorithm based
on  the  Geometric  Hashing  technique,  a  well  known
method  for  object  matching  introduced  in  [15]  and
[16].

Given  two attributed  graphs G (X k ,E k , Ak
) and

G (F j , E j , A j
) the  adjacency  matrices M X and

M F can be built so that each element of the matrix
represents  the position vector v⃗ between two local
fingerprints.  Since  the  graphs  are  simple  and
undirected,  these adjacency matrices  are  symmetrical
and triangular, so for a  n  n matrix we only need to
consider n(n−1)/2 elements.  These  elements  can
be  indexed  in  a  lookup  table,  where  each  index  is
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Figure 5. The 2-Level matching process.
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associated to the pair of local fingerprints connected by
that position vector, along with some attributes A. The
similarity  between  the  graphs  can  then  be  quickly
computed  using  these  lookup  tables  by  scoring  the
matching edges and the similarity between the nodes
according  to  the  set  of  attributes.  The  time  and
frequency  values  are  quantized  to  allow  some
deformation in the graphs and account for errors due to
noise.  To  disambiguate  the edges  we pair  them to a
reference  edge  represented  by  the  position  vector
between the  local  fingerprint  being  processed  and  a
reference local fingerprint. This reference node should
be one that's common to both the query graphs and the
candidate graphs in order for the match to succeed. As
reference  nodes  we  then  choose  the  query  local
fingerprints x k and  the  associated  candidates

C k={sij} picked  in  the  time  clustering  stage.  If
x k and sij happen  to  belong  to  the  same

fingerprint  then  the  graphs  they  induce  will  be
constructed using the same reference system and they
will match to some degree.
The lookup tables are implemented using hash tables to
get  O(1) time  complexity  and  have  the  following
structure

H [M (i , j)]=(si , s j)  (22)

where the keys are created by hashing the elements of
the  adjacency  matrix  using  the  following  hashing
function

M (i , j)=vij
t
⊕v ij

f
⊕v i , ref

t
⊕v i , ref

f  (23)

the    operator  indicates  concatenation, v ij
t

and

v ij
f the  time component  and  frequency component

respectively  of  the  position  vector  between  the  i-th
node  and  j-th  node, v i , ref

t and v i , ref
f the  time

component  and  frequency component  of  the position
vector between the i-th node and reference node. These
hashed values will be the keys e of the hash table.
   The scoring is performed by considering both the
geometric relationships and the similarity between local
fingerprints using specific node attributes according to
the following scoring function

S coh (G( X k ,E k , Ak
) ,G(F j , E j , A j

))=¿

∑
e∈E k

∩E j

K c+as(e)⋅K s
 (24)

where

a s(e)=2−
1
∣d∣
[D H( xi

e , si
e
)+DH (x j

e , s j
e
)]  (25)

For  each  common  edge  e,  that  is  the  intersection
between Ek and E j which  can  be  computed  by
finding common keys between the hash tables H X

and H F , the function gives a constant score K c

for the spatio-temporal coherence and a weighed score
K s for the similarity between the local fingerprints

connected  by  the  edge. DH (x
e , se
) denotes  the

Hamming distance between the query local fingerprint
and the candidate local fingerprint at both ends of the
common edge  e.  In  our  implementation we used the
same  value  for K c and K s (K=1000).  Note  that
the nodes attributes in this case coincide with the local
fingerprint  descriptors  but  other  parameters  may be
used to measure the similarity, as we'll see below.

  The  similarity  function  (25)  requires  the  binary
descriptors be stored in order to compute the Hamming
distance,  which  can  result  in  high  storage  space
requirements  for  large  data  sets.  To  avoid  this,  the
following similarity function can be used

a s(e)=
1
∣d∣[β(w x i

e , ws i
e)+β(w x j

e , w s j
e)]  (26)

where  w=q (x) are  the  auditory  words  resulting
from the binary vector quantization, β() a function
defined as follows

β(w1 ,w 2)={∣d∣−∣ε(w1)−ε(w2)∣ w1=w2

0 w1≠w2

(27)

ε( ) being  the  quantization  error  of w .  This
implementation  uses  simple  comparison  operators
instead  of  the  Hamming  distance  as  a  measure  of
similarity and only requires storing the auditory words
and  their  quantization  errors  (which  can  be  pre-
computed)  rather  than  the  whole  descriptors,  with
massive savings in terms of storage space. The results
of this second stage are stored in a final top-k list. The
effect of this “reranking” process is that of increasing
the  probability  of  match  in  the  top-k list  when  the
scores between the candidates are too close. The use of
two different  stages  makes the  matching algorithm a
multi-level  (2-level)  process,  which  can  be  used  to
make  the  system adaptive,  as  depicted  in  Figure  6.
Here we use a simple threshold to decide whether to
activate  the  second  stage,  but  something  more
sophisticated may be devised.



7. Performance

The performance of the proposed method have been
evaluated  using  10,000  query  audio  clips  extracted
from  a  set  of  1,000  music  recordings  of  different
genres.  To  test  the  time-translation  invariance  of  the
fingerprint  model  the  clips  were  taken  at  random
offsets within the recordings.

7.1 Robustness

We  applied  various  transformations  to  the  query
clips that have been typically used to test other audio
identification systems and  that  are  listed  in  Table  1.
The  first  column  reports  the  transformation  applied
while the second and third column report the accuracy
for  different  lengths  of  the  query  clips.  The  results
clearly  show  the  validity  of  our  method.  However,
applying single processing steps to audio signals is not
very  realistic,  as  in  real  world  scenarios  the  audio
typically  undergoes  different  transformations  before
being delivered to the recipients. In this regard, we use
different  audio  models  in  an  attempt  to  represent
different  scenarios  where  ACI  technology  may  be
applied.

Table 1

Transformation 5-second 10-second

Equalization (as in [1]) 99.9% 100%

Echo (delay = 250ms, decay = 0.2) 99.9% 100%

Tempo scaling (+10%) 99.7% 99.9%

Linear Speed Change  +2% 88.9% 96.7%

Linear Speed Change  -2% 87.2% 96.6%

MP3 encoding @ 44.1KHz, 32Kb/s 99.9% 99.9%

GSM encoding @ 8KHz, 13Kb/s 92.2% 98.10%

Model 1

This model represents a typical processing chain that is
common,  for  example,   in  radio  broadcasting.  This
chain  is  not  standard  and  may  vary  considerably
depending on the application, but after some research it
appears  that  typical  processing  chains  in  broadcast
audio include the stages depicted in Figure 7 below

For  the  harmonic  enhancer  we  added  even  order
harmonics  at  a  crossover  frequency of  4kHz  with  a
drive of 6dB, the equalization stage applied the EMI 78
curve to  emphasize the bass  while  reducing noise at
high  frequencies,  the  compressor  had  a  threshold  of
-35dB and ratio, attack and release of 6:1, 100ms and
1s respectively, while the tempo was scaled up by 10%.

Model 2

This  model  represents  a  tougher  scenario  where  the
original audio signal is passed through the processing
chain of Model 1 and additively combined to another
audio signal. A typical application that can be roughly
modeled  in  this  way  is  over-the-air  identification,
where  pre-processed  audio  (for  example  a  radio
broadcast or other source) is played in an environment
and  affected  by  background  noise  before  being
recorded  by the  ACI system.  The  background  noise
sample used in the tests was recorded in a marketplace
and  has  been  randomly added  to  the  query  clips  at
various Signal to Noise Ratios.

The results for the two models are reported in Table 2.
It shows that the proposed method is also effective for
recognition  of  distorted  audio  in  the  presence  of
additive noise.  The tests were conducted following a
forced-choice approach where all the query audio clips
were taken from recordings present in the database and
the system forced to choose a best match.

Level 1
Time-clustering

p(match) > 
?

Results

Level 2
PWG Hashing

 NO

YES

Figure 6. Multilevel matching scheme.
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Enhancer Equalizer Compressor

Time
scaler

Xi(t) Xo(t)

Figure 7. Model 1 test.

Harmonic
Enhancer Equalizer Compressor

Time
scaler

Xo(t)
+n(t)

Xi(t)

Figure 8. Model 2 test.



Table 2

Processing 5-second 10-second

Model 1 97.2% 99.4%

Model 2 See Figure 9 See Figure 9

7.2 Speed

The recognition time basically depends on the speed
of  the  fingerprinting  and  matching  processes,  which
have a constant and linear time complexity of  O(Ti )
and O(|D|) respectively at each processing step, where
Ti is the duration of an input audio block (fixed) and |D|
the size of the fingerprint database (generally variable).
Extracting an audio signature from 1 second of audio
took approximately 6 ms on average, while searching
the fingerprint space for a match depends on the size of
the  fingerprint  database  and  the  distribution  of  the
words in the index. On a simulated database of 10,000
recordings with an average duration of 5 minutes and a
quasi-uniform distribution of words it took on average
210ms  to  search  for  a  match.  These  figures  where
obtained  using non-optimized  algorithms (aside  from
the FFT computation) written in C++ and running on a
laptop computer with a 2.53GHz i5 processor, 3MB L3
cache and 4GB of RAM.

7.3 Compactness

    Our fingerprinting method is adaptive as it selects
the interest points based on the characteristics of the
audio, so the granularity is not fixed and depends on
the size of the maxima suppression window. A rough
estimation  of  the  expected  number  of  (local)
fingerprints per time unit can be calculated using the
following formula (28)

μLF≃⌊ Δ T
Δ T W p

⌋⋅⌊ Δ f
Δ f W p

⌋  (28)

which,  with  the  current  settings,  corresponds  to  18
fingerprints  per  second.  A statistical  analysis  on  the
music database used for our experiments reveals that
this is indeed the average granularity, as can be seen in
Figure 10. Considering that the auditory words are 7-
bit binary vectors, the p.d.f. in Figure 10 indicates an
average rate of about 18 words per  second, that  is a
mean  throughput  of  126  b/s.  Thus,  our  method
produces  very  compact  fingerprints  allowing,  for
example, a music database of 1 million recordings with
an average duration of 4 minutes be fingerprinted using
less  than  4GB  of  storage  space  (excluding  support
information).

8. Conclusions

We have presented an audio content identification
method based on a binary Auditory Words model built
using  local  binary  descriptors  and  inspired  to
techniques and paradigms from the Computer  Vision
and  Information  Retrieval  communities.  Previous
works have shown the efficacy of some methods used
for  visual  recognition  to  solve  audio  content
identification  problems  and  our  work  demonstrates
how not only specific processing techniques but entire
models  and  paradigms can  be  adopted  with success.
Further work should probably be focused on the search
algorithm, particularly on the use of more efficient data
structures. A thorough analysis of the parameters of the
system (especially those used to build the descriptors)
to observe how the variation of these values impact the
system's  performances  is  also  worth  further
investigation. 
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